
J Glob Optim (2007) 38:581–596
DOI 10.1007/s10898-006-9097-x

O R I G I NA L A RT I C L E

Two level minimization in multidimensional scaling

Antanas Žilinskas · Julius Žilinskas

Received: 14 July 2006 / Accepted: 19 September 2006 / Published online: 27 October 2006
© Springer Science+Business Media B.V. 2006

Abstract Multidimensional scaling with city block norm in embedding space
is considered. Construction of the corresponding algorithm is reduced to minimization
of a piecewise quadratic function. The two level algorithm is developed combining
combinatorial minimization at upper level with local minimization at lower level.
Results of experimental investigation of the efficiency of the proposed algorithm are
presented as well as examples of its application to visualization of multidimensional
data.

Keywords Multilevel optimization · Multidimensional scaling · Metaheuristics ·
Global optimization

1 Introduction

Multidimensional scaling (MDS) is a technique for analysis of multidimensional data
widely usable in different applications (Borg and Groenen 1997, Cox and Cox 2001).
Theoretical and algorithmic aspects of MDS are considered, by Borg and Groenen
(1997), Cox and Cox (2001), Groenen (1993), De Leeuw and Heiser (1982), Mathar
(1997) among others. Let us give a short formulation of the problem. The dissimilarity
between pairs of n objects is given by the matrix (δij), i, j = 1, . . . , n, and it is supposed
that δij = δji. The points in an m-dimensional embedding space xi ∈ Rm, i = 1, . . . , n,
should be found whose interpoint distances fit the given dissimilarities. Most fre-
quently a two-dimensional (m = 2) embedding space is considered, for example,
aiming to visualize the results of MDS. Different measures of accuracy of fit can
be chosen defining different images of the considered set of objects. In the case the
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objects are points in a high-dimensional vector space such images can be interpreted
as different nonlinear projections of the set of points in high-dimensional space to an
embedding space of lower dimensionality. The problem of construction of images of
the considered objects is reduced to minimization of an accuracy of fit criterion, e.g.
of the most frequently used least squares STRESS function

S(X) =
∑

i<j

wij(dij(X) − δij)
2, (1)

where X = (x11, . . . , xn1, x12, . . . , xnm)T ; dij(X) denotes the distance between the
points xi and xj; it is supposed that the weights are positive: wij > 0, i, j = 1, . . . , n.

Since different distances dij(X) can be defined, the formula (1) defines a class of
accuracy criteria. To define a particular criterion a norm in Rm should be chosen imply-
ing the particular formula for calculating distances dij(X). The most frequently used
norm is Euclidean. However, MDS with other Minkowski norms in embedding space
can be even more informative than MDS with Euclidean norm (Groenen et al. 1995).
Results of MDS with different norms can be useful to grasp different properties of the
considered objects. For example, the pictures in Fig. 2 presenting results of MDS with
Euclidean and city block distances show different properties of a multidimensional
hypercube.

In the present paper MDS algorithms based on STRESS criterion with city block
norm in the embedding space are considered. Since the non-differentiability of (1)
in this case cannot be ignored, MDS with city block distances is especially difficult.
The minimization problem of (1) is high-dimensional: X ∈ RN where the number
of variables is equal to N = n × m. STRESS function can have many local minima.
Therefore MDS is a difficult global optimization problem.

Global optimization methods are developed for various classes of multimodal
problems (Törn and Žilinskas 1989, Horst et al. 1995). Different global optimization
methods have been applied to MDS, e.g. tunneling method by Groenen (1993), evo-
lutionary methods by Mathar and Žilinskas (1993), Groenen et al. (2000), Everett
(2001), simulated annealing by Brusco (2001), Leng and Lau (2004), Klock and
Buhmann (1999), D.C. algorithm by An and Tao (2001). In the present paper global
minimization of (1) with city block norm is considered. Several two level methods
are investigated where local minimization is a lower level task, and combinatorial
optimization is an upper level task.

2 On differentiability of STRESS at local minimizer

Majority of publications on MDS consider STRESS with Euclidean distances dij(X)

which are special case of Minkowski distances

dij(X) =
(

m∑

k=1

∣∣xik − xjk
∣∣p

)1/p

,

with p = 2. However, recently also increased interest to the methods based on city
block distances, i.e. Minkowski distances with p = 1,

dij(X) =
m∑

k=1

∣∣xik − xjk
∣∣ (2)
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(see, e.g. Brusco 2001, Leng and Lau 2004). For a review of MDS with city-block
distances we refer to Brusco (2001).

Many global optimization methods for minimization of (1) with Euclidean distances
include auxiliary local minimization algorithms. Differentiability of an objective func-
tion at minimum point is an important factor for a proper choice of local minimization
algorithm. The well known result by De Leeuw (1984) on differentiability of (1) with
Euclidean distances at local minimizer is generalized for general Minkowski distances
in (Groenen et al. 1995). However the latter result does not cover the case of city block
distances, i.e. the case of Minkowski distances with p = 1.

Let X be a local minimizer of S(·). Then a directional derivative with respect to
an arbitrary directional (unit) vector Y is not negative: DYS(X) ≥ 0. Therefore the
inequality

DYS(X) + D−YS(X) ≥ 0, (3)

holds for an arbitrary vector Y. The expression of DYS(X),

DYS(X) =
∑

i<j

2wij(dij(X) − δij) · DYdij(X), (4)

includes DYdij(X) whose compact expression can be obtained using the following
formula

DYijk dij(X) =
⎧
⎨

⎩

yik − yjk, if xik − xjk > 0,
−(yik − yjk), if xik − xjk < 0,
|yik − yjk|, if xik − xjk = 0,

(5)

where Yijk denotes a vector whose all components are equal to zero except those
corresponding to xik, xjk, k = 1, . . . , m. Formula (5) can be written in the following
shorter form

DYijk dij(X) = |yik − yjk| · sign(xik − xjk)(yik − yjk), (6)

where sign(·) denotes non-symmetric signum function: sign(t) = 1, for t ≥ 0, and
sign(t) = −1 for t < 0. Substitution of DYdij(X) in (4) with its expression based on
(6) gives the following formula

DYS(X) =
m∑

k=1

|yik − yjk| · sign((xik − xjk)(yik − yjk)). (7)

From (3), (4), and (7) it follows the inequality

4
m∑

k=1

∑

(i,j)∈Qk

wij(dij(X) − δij) · |yik − yjk| ≥ 0, (8)

where Qk = {(i, j) : xik = xjk}.
Since the inequality (8) is not satisfied in a case dij(X) = 0, dij(Y) > 0 and

drs(Y) = 0, (rs) �= (i, j), then at local minimum point X the inequalities dij(X) > 0
should hold for all i �= j. The positiveness of distances dij(X) > 0 means that the
points in embedding space (images of the considered objects) do not coincide. Our
proof is similar to that in (Groenen et al. 1995), but some modification was needed
since their formulae do not cover the case of city block distances.
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The positiveness of distances between image points corresponding to a local
minimizer of (1) does not imply differentiability of (1) at the minimizer. Such a
conclusion distinguishes MDS version with the city block distances from all other
MDS versions with Minkowski (p > 1) distances. On the other hand it does not
prove the existence of cases with non-differentiable local minima. A simple example
illustrating possibility of non differentiable local minimum is presented below.

Let us consider an example of two-dimensional scaling where data is the following

δ12 = δ14 = δ23 = δ34 = 1, δ13 = δ24 = 3 (9)

and wij = 1. The set of vertices of the square centered at origin, and with side equal
to 4/3 is a potential image of the considered objects. This image corresponds to the
eight-dimensional (n × m = 8) point X̄ where

x̄11 = x̄21 = x̄12 = x̄42 = −2
3

, x̄31 = x̄41 = x̄22 = x̄32 = 2
3

. (10)

We will show that X̄ is a local minimizer of S(X). The directional derivative of S(X)

with respect to an arbitrary directional vector Y at the point X̄ is equal to

DYS(X̄) = 2(|y11 − y21| + |y12 − y42| + |y22 − y32| + |y31 − y41|)/3 ≥ 0. (11)

It is obvious that

DYS(X̄) > 0 (12)

unless all summands in (11) are equal to zero. In the latter case the directional vector
should satisfy the following equalities

y11 = y21, y12 = y42, y22 = y32, y31 = y41, (13)

implying differentiability of S(X̄ + tY) with respect to t. The rather long initial expres-
sion of d2

dt2
S(X̄ + tY) using elementary algebra can be reduced to the following one

d2

dt2
S(X̄ + tY) = 2[(y12 − y22)

2 + (y11 − y31 + y12 − y32)
2

+(y11 − y41)
2 + (y21 − y31)

2

+(y21 − y41 + y22 − y42)
2 + (y32 − y42)

2], (14)

implying the inequality

d2

dt2
S(X̄ + tY)|t=0 > 0 (15)

for all directional vectors satisfying (13), unless all summands in (14) are equal to
zero. Let Y satisfy equality d2

dt2
S(X̄ + tY) = 0 and (13), then the components of Y also

satisfy the equalities

y11 = y21 = y31 = y41, y12 = y22 = y32 = y42. (16)

But S(X) is invariant with respect to translation of coordinates implying that

S(X̄) = S(X̄ + Y). (17)

Therefore the inequalities (12) and (15) prove that X̄ is a local minimizer of S(X).
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Because STRESS function can be non differentiable at local minimizer, applica-
tion of local descent methods with high-convergence rate, e.g. of different versions
of Newton method, seems questionable. In the subsequent sections we either apply
search methods for STRESS minimization, or reformulate the problem introducing
constraints.

3 Two level optimization of STRESS

We consider two-dimensional (m = 2) embedding space because our aim is to visu-
alize multidimensional data for heuristic analysis. Using city block distances dij(X),
STRESS (see (1)) can be redefined as

s(X) =
∑

i<j

(∣∣xi1 − xj1
∣∣ + ∣∣xi2 − xj2

∣∣ − δij
)2 , (18)

where weights wij are supposed equal to 1.
Let Agh denotes a set such that

Agh = {X : xi1 ≤ xj1 for gi < gj, xi2 ≤ xj2 for hi < hj}, (19)

where g and h are permutations of 1, . . . , n.
For X ∈ Agh (18) can be rewritten in the following form

s(X) =
∑

i<j

((
xi1 − xj1

)
gij + (

xi2 − xj2
)

hij − δij
)2 ,

gij = sign(gi − gj), hij = sign(hi − hj). (20)

Since function s(X) is quadratic over polyhedron X ∈ Agh the minimization problem

min
X∈Agh

s(X) (21)

is a quadratic programing problem. The structure of the minimization problem (21)
supposes a two level minimization algorithm: to solve a combinatorial problem at
upper level, and to solve a quadratic programing problem (21) at lower level:

min
g,h

s (X (g, h)) , (22)

where X (g, h) = arg min
X∈Agh

s (X) . (23)

The upper level (22) objective function is defined over the set of (g, h) where g and
h are permutations of 1, . . . , n. Properties of the objective function are not known,
therefore optimal solution can not be found by means of an efficient algorithm with a
guarantee. A reasonable alternative is a metaheuristic optimization, for example by
means of evolutionary search.

Alternatively the function (18) can be minimized directly. Methods combining
selection of starting points with local minimization can be also considered as implicit
two level algorithms, where, e.g. a genetic algorithm performs combinatorial search in
the space of basins of attraction of local minima, although this space is not explicitly
defined. In the case of MDS with Euclidean distances an algorithm combining local
descent and evolutionary search is proposed in (Mathar and Žilinskas 1993). Such
an algorithm is shown to be most reliable of known MDS algorithms experimentally
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tested in (Groenen et al. 2000), and (Mathar 1996). Therefore it seems reasonable
to investigate similar algorithm also for the case of city block distances. It is only
necessary to replace a gradient based descent algorithm with a search algorithm.

The disadvantage of the two level optimization problem with quadratic problems
at lower level is enormous number of potential solutions of a combinatorial problem
at upper level. Although the quadratic programing problems can be solved easily,
the upper level problem theoretically is intractable since the favorable properties of
the objective function of the combinatorial problem are not known. The enormous
number of potential solutions at upper level seems a bit artificial since solutions of a
quadratic programing subproblem are not necessary local minimizers of the original
problem.

From the theoretical point of view the disadvantage of the second version of two
level algorithm for minimization of STRESS with city block distances is a difficult
local minimization problem at lower level; the advantage is much smaller number of
potential solutions at upper level.

Both versions of two level algorithms seem prospective candidates for practical
applications of MDS based on city block distances. Implementations of both versions
combine a metaheuristic algorithm for upper level problems with a local minimization
at lower level. We compare these versions experimentally using artificially difficult
and standard test problems.

4 Algorithms for lower level problems

For the first version of the two level algorithm the problem at lower level is solved
using sophisticated local algorithm combining quadratic programming algorithm and
the search algorithm by Powell presented in Press et al. (2002). The extended form of
lower level quadratic programming problem (23) is presented below:

min −dTX + 1
2

XTDX, (24)

s.t.A1X = 0, (25)

A2X ≥ 0, (26)

A3X ≥ 0, (27)

where D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

n − 1 −1
∑

g1jh1j −g12h12
−1 n − 1 . . . −g12h12

∑
g2jh2j . . .

...
...∑

g1jh1j −g12h12 n − 1 −1
−g12h12

∑
g2jh2j . . . −1 n − 1 . . .
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

d =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
g1jδ1j∑
g2jδ2j
...∑

h1jδ1j∑
h2jδ2j
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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A1 =
(

1 1 . . . 0 0 . . .

0 0 . . . 1 1 . . .

)
,

A2ij =
⎧
⎨

⎩

1, if gj = i + 1
−1, if gj = i
0, otherwise

∣∣∣∣∣∣
, i = 1, . . . , n − 1, j = 1, . . . , 2n,

A3ij =
⎧
⎨

⎩

1, if hj−n = i + 1
−1, if hj−n = i
0, otherwise

∣∣∣∣∣∣
, i = 1, . . . , n − 1, j = 1, . . . , 2n.

STRESS function is invariant with respect to translation, i.e. addition of constant
values to xi1 or/and xi2, i = 1, . . . , n. This disadvantage can be eliminated centering
the solution of quadratic programing problem with respect to xi1 and xi2 by means of
equality constraints (25). The latter ensure that the sums of xi1 and xi2 are both equal
to 0: a (2 × 2n) matrix A1 multiplied by X is a vector of two sums (

∑n
i=1 xi1,

∑n
i=1 xi2).

Polyhedron X ∈ Agh is defined by linear inequality constraints (26) and (27). The
dimensionality of matrices A2 and A3 is ((n − 1) × 2n). They contain one element
equal to 1 and one element equal to −1 in each row; the other elements are equal to 0.
The ith row of A2 represents x{j|gj=i+1}1 − x{j|gj=i}1, and the corresponding constraint
ensures that x{j|gj=i+1}1 ≥ x{j|gj=i}1. Similarly A3 ensures the desired sequencing of xi2.

The lower level problem (24)–(27) can be tackled by a standard quadratic program-
ing method. In this case the results below are indicated by ‘qp’. However, solution
of a quadratic programing problem is not necessary a local minimizer of the initial
problem, i.e. of minimization of STRESS (1). If a solution of a quadratic programing
problem is on the boundary, most likely that a local minimizer of the initial problem
is in the neighboring subregion. Therefore we have tested two extended versions of
local minimization. In the first version, a quadratic programing problem is solved in
the neighboring subregion on the opposite side of the active inequality constraints.
Minimization by means of quadratic programing is repeated while better values are
found and some inequality constraints are active. In the description of the experimen-
tal results this type of local minimization is denoted by ‘q’. In the second extended
version of local minimization (denoted by ‘l’) search is continued by means of Powell’s
method.

For the second version of the two level algorithm the problem at lower level can
be solved by an algorithm supposed for non-differentiable objective functions. Below
we investigate such a two level algorithm using the version of local search algorithm
by Powell presented in Press et al. (2002).

5 Genetic algorithm for upper level problem

The upper level problem is a combinatorial optimization problem which can be for-
mulated either explicitly or implicitly. In both cases an evolutionary approach is
applicable (Michalewicz 1996). The idea is to maintain a population of p suboptimal
solutions whose crossover can generate better solutions. An offspring is produced by
a combination of crossover and local search operators; some authors call such algo-
rithms memetic (Corne et al. 1999). An initial population is generated performing local
search from random starting points. The population evolves generating offsprings of



588 J Glob Optim (2007) 38:581–596

randomly mated parents. The fitness of an individual is defined by the optimal value
of the corresponding lower level problem, and an elitist selection is applied.

In the first version of the two level algorithm the chromosome of an individual
is represented by a pair of permutations (g, h) of natural numbers 1, . . . , n defining
a feasible region of the quadratic programming problem (21). In the second version
the chromosome is represented by a local minimizer X implicitly defining a basin of
attraction. General structure of an evolutionary algorithm is presented in Fig. 1.

Two versions of general structure of the algorithm in Fig. 1 should be imple-
mented taking into account different encodings of chromosomes. While the initial
population for the second version of the algorithm is formed directly from the found
local minimizers, in the first case a population of permutations’ pairs (g, h) should be
formed according to the order of coordinates of the found minimizers x11, . . . , xn1 and
x12, . . . , xn2.

The two point crossover operators are similar in both cases where parents are cho-
sen at random. In the first version of the algorithm the chromosomes of parents are
denoted (ĝ, ĥ) and (ǧ, ȟ), where the first corresponds to the better fitted parent. A two
point crossover reproducing an offspring (g, h) is defined by the following formula

(g, h) = MIN((ĝ1, . . . , ĝξ1 , g̃ξ1+1, . . . , g̃ξ2−1, ĝξ2 , . . . , ĝn),

(ĥ1, . . . , ĥξ1 , h̃ξ1+1, . . . , h̃ξ2−1, ĥξ2 , . . . , ĥn)),

where ξ1, ξ2 are two integer random numbers with uniform distribution over 1, . . . , n;
MIN is a lower level search operator described above; and g̃i are numbers from the
set 1, . . . , n not included into the set (ĝ1, . . . , ĝξ1 , ĝξ2 , . . . , ĝn), and ordered in the same
way as they are ordered in ǧ1, . . . , ǧn. The sequence of h̃i is defined in similar way.

In the second version of the algorithm the crossover operator is defined by the
following formula

X = min((x̂11, . . . , x̂ξ1 1, x̌ξ1+1 1, . . . , x̌ξ2−1 1, x̂ξ2 1, . . . , x̂n1),

(x̂12, . . . , x̂ξ1 2, x̌ξ1+1 2, . . . , x̌ξ2−1 2, x̂ξ2 2, . . . , x̂n2)),

where X is the chromosome of the offspring; X̂ and X̌ are chromosomes of the selected
parents; min(Z) denotes an operator of calculation of the local minimizer of (1) from
the starting point Z using Powell’s algorithm; ξ1, ξ2 are two integer random numbers
with uniform distribution over 1, . . . , n; and it is supposed that the parent X̂ is better
fitted than the parent X̌ with respect to the value of STRESS.

As it follows from the general structure of the algorithm in Fig. 1 an elitist selec-
tion rule is implemented, and search terminates after fixed in advance number of
crossovers Nc.

Fig. 1 The structure of a genetic algorithm with parameters (p, Ninit, Nc)
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6 Experimental investigation

Theoretical comparison of different MDS methods, especially of visualization meth-
ods, is difficult. There are many ways to represent features of data by geometric
properties of data images. Human perception of geometric images is also ambiguous.
Therefore it is difficult to assess efficiency of the main component of a MDS algorithm,
i.e. an optimization method used for minimization of STRESS function. We inves-
tigate efficiency of the developed optimization algorithm by means of traditional
experimental approach in optimization although it does not fully assess quality of
visualization.

We start with visualization of well understood geometric objects: vertices of multi-
dimensional cubes and simplices of different dimensionality. Such data is difficult for
MDS since the geometric objects extending in all dimensions are aimed to visualize
as two-dimensional figures. n = dim + 1 vertices of multidimensional simplex may be
defined by

vij =
{

1, if i = j + 1,
0, otherwise,

i = 1, . . . , dim + 1, j = 1, . . . , dim.

The coordinates of ith vertex of a dim-dimensional hypercube are equal either to 0 or
to 1, and they are defined by binary code of i = 0, . . . , n − 1, n = 2dim.

For both types of objects symmetric location of vertices is characteristic. In the
image of a simplex a special central location of the ‘zero’ vertex is expected. The
other vertices are expected to be shown equally with respect to each other. All verti-
ces of a hypercube are equally far from the center and compose clusters containing 2d

points, where d is any integer number between 1 and dim. Such clusters correspond
to edges, faces, etc. In this experiment we compare the images corresponding to the
best known STRESS values ignoring computational expenditure.

Dissimilarities between vertices can be measured by Euclidean and city block dis-
tances. Figs. 2 and 3 show influence of norm in original and embedding space to the
result of MDS, where upper index CB means city block norm and ED means Euclid-
ean norm, e.g. δED and dCB means that dissimilarities between vertices are measured
by the Euclidean distances in the original space and distances in the embedding space
correspond to the city block norm. The vertices are shown as circles. To make repre-
sentations more visual, adjacent vertices are joined by lines. Lines are darker if they
come from ‘zero’ vertex in the case of simplex and if they come from one of two
opposite vertices in the case of hyper-cube.

The images of the hypercube corresponding to city block norm in embedding space
well visualize equal location of all vertices of the hypercube with respect to the cen-
ter. This property is not visible from the images corresponding to Euclidean norm in
embedding space. On the other hand, the latter images show the structure composed
of 2d points, as it is the case of the original hypercube.

As expected, the ‘zero’ vertex of multidimensional simplex is shown at the center
of images corresponding to all combinations of norms. The images corresponding to
city block norm in embedding space well visualize equal location of other vertices with
respect to ‘zero’ vertex. This property is not highlighted by images corresponding to
Euclidean norm in embedding space.
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f=0.331334 f=0.359196

f=0.314035 f=0.332030

Fig. 2 5-dimensional hyper-cube visualized using different norms in original and embedding spaces

Besides of qualitative assessment of informativeness of the images it is interesting
to compare ‘visualization errors’ quantitatively. To exclude impact of scales a relative
error

f (X) =
√

S(X)
∑

i<j δ
2
ij

is used for comparisons. The values of f (X) are presented in Figs. 2 and 3 to compare
the visualization quality not only heuristically but also with respect to the quantitative
precision criterion. In both cases the least error is obtained in the case of Euclidean
norm in original space and city block norm in embedding space. This conclusion is
consistent with known results on different structure of distances in spaces of different
dimensionality (see e.g. Žilinskas 2003).

The examples of visualization of the well known multidimensional geometric
objects show that the images corresponding to city block norm in embedding space
can be more informative than the images corresponding to Euclidean norm. The
development of efficient algorithms for minimization of STRESS with city block dis-
tances (1) is an urgent problem since city block distances based MDS methods are
underdeveloped with respect to that based on Euclidean distances. The structure of
minimization problem (1) suggests two level methods for MDS with city block norm:
metaheuristic optimization at upper level and local minimization exploiting piecewise
quadratic structure of the objective function at lower level. Some results of quantita-
tive assessment of such two level algorithms are presented below. Test data correspond
to vertices of a 4-dimensional hyper-cube and a 12-dimensional simplex. The middle
size problems have been chosen for investigation because they hardly can be solved
with unsophisticated methods but still can be solved with specially tailored methods
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f=0.362325 f=0.376921

f=0.358767 f=0.37127

Fig. 3 20-dimensional simplex visualized using different norms in original and embedding spaces

in time acceptable to collect representative statistics for comparison. An algorithm
has been run 100 times with each set of parameters to evaluate reliability and speed.
Personal computer with AMD Duron 500 MHz processor and RedHat 9 Linux has
been used in the experiments.

Several versions of the algorithm were tested. At the upper level a genetic algo-
rithm with p = 60, Ninit = 6000, and Nc = 1200 has been used. At lower level
different local minimization algorithms described above have been used. The results
are summarized in Table 1 and Fig. 4 (related to the visualization of the hypercube)
and in Table 2 and Fig. 5 (related to the visualization of the simplex). To assess the
performance minimal, average, and maximal running times in seconds (tmin, tmean,
tmax) are estimated from 100 runs. Similarly, minimal, average, and maximal estimates
of global minimum in 100 runs (f ∗

min, f ∗
mean, f ∗

max) are presented in the tables to show
quality of found solutions. The percentage of runs where the best known estimate

Table 1 Minimization results related to MDS of 4-dimensional hyper-cube

qp q l tmin tmean tmax f∗
min f∗

mean f∗
max perc

Version with quadratic programing
+ 9.29 10.37 11.57 0.2965 0.2965 0.2969 97
+ + 21.81 26.93 31.15 0.2965 0.2965 0.2965 100
+ + + 61.43 99.54 117.46 0.2965 0.2965 0.2965 100
+ + 57.19 97.06 117.79 0.2965 0.2965 0.2965 100

Version without quadratic programing
42.88 57.85 85.44 0.2965 0.2966 0.2970 34



592 J Glob Optim (2007) 38:581–596

target value = 0.296536

0.00 20
0.00

1.00

qp

+

+

+

+

q

+

+

l

+

+

Fig. 4 Time to target in case of 4-dimensional hyper-cube

of global minimum has been found (perc) is presented in the tables as a criterion of
reliability of different versions of the algorithm.

The dynamic of minimization is illustrated using plots of time to target (Festa et
al. 2002). To evaluate time to target, algorithm is run r times recording the running
time when function value at least as good as the target value is found. Let ti denotes a
sequence of time moments, and ri denotes number of runs where target value is found
no later than ti. The target plot is a plot of ri/r against ti. Several target plots presented
in the same figure show comparative efficiency of the corresponding algorithms: the
graph above the others indicates the most efficient algorithm.

For the problem of visualization of the hypercube the version of the algorithm
indexed by ‘qp-q’ is most efficient. The other versions of the algorithm taking into
account piecewise quadratic structure of STRESS are of similar efficiency. However,
the version of the algorithm not taking into account piecewise quadratic structure of

Table 2 Minimization results related to MDS of 12-dimensional simplex

qp q l tmin tmean tmax f∗
min f∗

mean f∗
max perc

Version with quadratic programing
+ 3.24 3.60 4.04 0.3249 0.3250 0.3259 94
+ + 4.12 5.41 7.23 0.3249 0.3249 0.3259 98
+ + + 11.70 16.35 23.30 0.3249 0.3249 0.3249 100
+ + 11.30 15.61 22.70 0.3249 0.3249 0.3249 100

Version without quadratic programing
16.39 25.53 35.57 0.3249 0.3249 0.3249 100
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target value = 0.324920
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Fig. 5 Time to target in case of 12-dimensional simplex

STRESS is not sufficiently reliable, best known estimate of global minimum has been
found only in 34% runs. For the problem of visualization of the simplex the version of
the algorithm indexed by ‘qp-q’ is again most efficient. In this case the performance
of versions taking into account piecewise quadratic structure of STRESS does not
differ so much from the version not taking into account piecewise quadratic structure
of STRESS.

An alternative algorithm for MDS with city block norm in embedding space is
based on simulated annealing minimization of (1) (Brusco 2001). For experimental
testing of the latter algorithm Morse code confusion data was used. Originally the
Morse code confusion data is presented by a proximity matrix (Borg and Groenen
1997). Dissimilarity can be defined via proximity in different ways. We have used a
dissimilarity matrix calculated from the proximity matrix according to the formula of
(Brusco 2001). The best found value of s(X) reported in (Brusco 2001) is equal to
153.24.

Dimensionality of the minimization problem related to MDS of Morse code con-
fusion data is n = 64. Therefore larger values of parameters of our algorithm than in
the experiments above have been chosen: p = 102, Ninit = 106, and Nc = 104, and the
version ‘qp-q’ for local search has been used. The algorithm has been run ten times.
The best value found was 153.001, while the average and maximal estimates of global
minimum were equal to 153.380 and 154.435 correspondingly. The average minimiza-
tion time was tmean = 5657. Two level algorithm has found better value than 153.01
in 60% cases, and with respect to this criterion it outperforms simulated annealing
(Brusco 2001) which finds the value 153.24 only in one case out of ten.

Visualization of the results of MDS corresponding to s(X) = 153.001 is presented
in Fig. 6. It is interesting to note that image of Morse code confusion data resembles
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Fig. 6 Image of Morse code data

the image of a hypercube. Such a similarity can be considered as an advantage of MDS
with city block norm since Morse codes indeed is a mixture of vertices of different
dimensionality.

A disadvantage of the proposed two level method is a large computing time. How-
ever, rather good estimate of minimum can be found terminating search after rather
a small number of generations Nc = 103. With such a parameter of genetic algorithm
the best value found was 153.082, while the average and maximal estimates of global
minimum were equal to 153.635 and 155.074 correspondingly. The average minimi-
zation time was tmean = 843. Better values than 153.24 (the record value of Brusco
(2001)) have been found in 60% cases.

Experimental results of multidimensional scaling of larger geometric problems are
presented in Table 3. In this case larger values of p = 100, Ninit = 106, Nc (shown in
the table), and the local minimization version ‘qp-q’ have been used. The parameters
have been chosen empirically to find the best known f (X) value at least in 30% of
runs. Optimization has been repeated 10 times for each problem. The computing time
increased essentially. Complexity of the minimization problem seems to be growing
faster for simplex than for hypercube.

A two level minimization combining genetic search at upper level and local
minimization exploiting piecewise quadratic structure of the objective function at
lower level is an efficient algorithm for middle size MDS problems with city block
norm in embedding space. Further development of the algorithm targeting larger
problems seems prospective. A general idea to enhance performance of an evolution-
ary search is to start with better genetic material. In the case of MDS problems an
initial population can be composed of simple projections from the original space to
the embedding space, e.g. by the method of principal components. Local minimization
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Table 3 Minimization results related to MDS of larger geometric problems

Nc tmin tmean tmax f∗
min f∗

mean f∗
max perc

20-dimensional simplex
1,000,000 185 731 3,685 0.3623 0.3624 0.3625 30

5-dimensional hyper-cube
1,000 610 641 673 0.3313 0.3313 0.3314 90

can be improved by a more sophisticated exploitation of piecewise quadratic struc-
ture of (1). The computing time can be reduced by means of parallelization, since the
developed version of the algorithm can be parallelized rather easily.

7 Conclusions

The MDS methods with city block norm in an embedding space can better visualize
some properties of multidimensional objects than Euclidean norm based methods.
Two level structure with evolutionary search at upper level and local minimization at
lower level is prospective for development of city block norm based MDS algorithms.
Solutions found by such methods are sufficiently close to global minima however the
solution time of large problems is rather long. To reduce the computing time, the
piecewise quadratic structure of STRESS function can be further exploited as well as
parallelization of computations.
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